Groebner Bases
Topic:
polynomial.groebner
Groebner bases are fundamental tools in computational algebraic geometry for working with polynomial ideals, enabling ideal membership testing, polynomial system solving, variable elimination, and geometric theorem proving.
Mathematical Definition
Groebner Basis Definition: A set is a Groebner basis for ideal with respect to monomial order if:
where denotes the leading term and denotes the ideal generated.
S-Polynomial: The S-polynomial of and is:
Buchberger's Criterion: is a Groebner basis if and only if for all pairs :
(i.e., reduces to 0 modulo )
Monomial Orders:
- Lex: first non-zero entry of is positive
- Grlex: Total degree first, then lex
- Grevlex: Total degree first, then reverse lex from right
Groebner bases are a fundamental tool in computational algebraic geometry for working with polynomial ideals.
Overview
A Groebner basis is a special generating set for a polynomial ideal that has many useful computational properties:
- Ideal Membership Testing: Determine if a polynomial belongs to an ideal
- Polynomial System Solving: Find common solutions to systems of polynomial equations
- Variable Elimination: Eliminate variables from polynomial systems
- Geometric Theorem Proving: Prove geometric theorems algebraically
Monomial Orders
The choice of monomial order affects the structure of the Groebner basis:
| Order | Description | Use Case |
|---|---|---|
Lex | Lexicographic | Variable elimination |
Grlex | Graded lexicographic | Balanced computation |
Grevlex | Graded reverse lexicographic | Efficient computation |
Lexicographic Order (Lex)
Compares exponents from left to right:
- (2 > 1 in first position)
- (y > z in second position)
Best for: Variable elimination, solving systems
Graded Lexicographic (Grlex)
Compares total degree first, then lexicographic:
- (degree 3 > 2)
- (same degree, lexicographically)
Best for: Balanced trade-off between structure and efficiency
Graded Reverse Lexicographic (Grevlex)
Compares total degree first, then reverse lexicographic from right:
- (same degree, compare from right)
Best for: Efficient computation (often produces smaller bases)
Buchberger's Algorithm
The classic algorithm for computing Groebner bases:
Algorithm Steps
- Initialize: Start with the input polynomials
- S-pairs: For each pair of polynomials, compute the S-polynomial
- Reduce: Reduce each S-polynomial by the current basis
- Add: If reduction is non-zero, add to basis
- Repeat: Continue until no new polynomials are added
Applications
Solving Polynomial Systems
Compute a Groebner basis with Lex order to get elimination ideals.
Ideal Membership
Test if a polynomial belongs to an ideal by checking if its remainder under the Groebner basis is zero.
Elimination
With Lex order x > y > z, the Groebner basis contains polynomials in:
- Only z (elimination of x and y)
- y and z (elimination of x)
- x, y, and z
Examples
Basic Groebner Basis Computation
Compute Groebner basis for a polynomial ideal
Rust
#![allow(unused)] fn main() { use mathhook_core::core::polynomial::groebner::{GroebnerBasis, MonomialOrder}; use mathhook_core::{expr, symbol}; let x = symbol!(x); let y = symbol!(y); // Define polynomials: f1 = x - y, f2 = y^2 - 1 let f1 = expr!(x - y); let f2 = expr!((y ^ 2) - 1); // Create Groebner basis let mut gb = GroebnerBasis::new( vec![f1, f2], vec![x.clone(), y.clone()], MonomialOrder::Lex ); // Compute the basis gb.compute(); println!("Basis has {} polynomials", gb.basis.len()); }
Python
from mathhook import expr, symbol
from mathhook.polynomial.groebner import GroebnerBasis, MonomialOrder
x = symbol('x')
y = symbol('y')
# Define polynomials: f1 = x - y, f2 = y^2 - 1
f1 = expr('x - y')
f2 = expr('y^2 - 1')
# Create Groebner basis
gb = GroebnerBasis(
[f1, f2],
[x, y],
MonomialOrder.Lex
)
# Compute the basis
gb.compute()
print(f"Basis has {len(gb.basis)} polynomials")
JavaScript
const { expr, symbol } = require('mathhook');
const { GroebnerBasis, MonomialOrder } = require('mathhook/polynomial/groebner');
const x = symbol('x');
const y = symbol('y');
// Define polynomials: f1 = x - y, f2 = y^2 - 1
const f1 = expr('x - y');
const f2 = expr('y^2 - 1');
// Create Groebner basis
const gb = new GroebnerBasis(
[f1, f2],
[x, y],
MonomialOrder.Lex
);
// Compute the basis
gb.compute();
console.log(`Basis has ${gb.basis.length} polynomials`);
Sparse Polynomial Representation
Work with sparse polynomials for efficiency
Rust
#![allow(unused)] fn main() { use mathhook_core::core::polynomial::groebner::{Monomial, expression_to_sparse_polynomial}; use mathhook_core::{expr, symbol}; // Create a monomial x^2 * y (exponents [2, 1]) let mono = Monomial::new(vec![2, 1]); assert_eq!(mono.degree(), 3); // Convert expression to sparse polynomial let x = symbol!(x); let y = symbol!(y); let poly = expr!((x ^ 2) + y); let vars = vec![x, y]; let sparse = expression_to_sparse_polynomial(&poly, &vars); }
Python
from mathhook import expr, symbol
from mathhook.polynomial.groebner import Monomial, expression_to_sparse_polynomial
# Create a monomial x^2 * y (exponents [2, 1])
mono = Monomial([2, 1])
assert mono.degree() == 3
# Convert expression to sparse polynomial
x = symbol('x')
y = symbol('y')
poly = expr('x^2 + y')
vars = [x, y]
sparse = expression_to_sparse_polynomial(poly, vars)
JavaScript
const { expr, symbol } = require('mathhook');
const { Monomial, expressionToSparsePolynomial } = require('mathhook/polynomial/groebner');
// Create a monomial x^2 * y (exponents [2, 1])
const mono = new Monomial([2, 1]);
assert(mono.degree() === 3);
// Convert expression to sparse polynomial
const x = symbol('x');
const y = symbol('y');
const poly = expr('x^2 + y');
const vars = [x, y];
const sparse = expressionToSparsePolynomial(poly, vars);
Polynomial Reduction
Reduce polynomial by a set of polynomials (division algorithm)
Rust
#![allow(unused)] fn main() { use mathhook_core::core::polynomial::groebner::{ poly_reduce, poly_reduce_completely }; // Single-step reduction let reduced = poly_reduce(&poly, &basis, &order); // Complete reduction (until no further reduction possible) let fully_reduced = poly_reduce_completely(&poly, &basis, &order); }
Python
from mathhook.polynomial.groebner import poly_reduce, poly_reduce_completely
# Single-step reduction
reduced = poly_reduce(poly, basis, order)
# Complete reduction (until no further reduction possible)
fully_reduced = poly_reduce_completely(poly, basis, order)
JavaScript
const { polyReduce, polyReduceCompletely } = require('mathhook/polynomial/groebner');
// Single-step reduction
const reduced = polyReduce(poly, basis, order);
// Complete reduction (until no further reduction possible)
const fullyReduced = polyReduceCompletely(poly, basis, order);
Bidirectional Expression Conversion
Convert between Expression and sparse polynomial representation
Rust
#![allow(unused)] fn main() { use mathhook_core::core::polynomial::groebner::{ expression_to_sparse_polynomial, sparse_polynomial_to_expression }; use mathhook_core::{expr, symbol}; let x = symbol!(x); let y = symbol!(y); let vars = vec![x.clone(), y.clone()]; // Expression to sparse let expr = expr!((x ^ 2) + y); let sparse = expression_to_sparse_polynomial(&expr, &vars).unwrap(); // Sparse back to expression let back = sparse_polynomial_to_expression(&sparse, &vars); }
Python
from mathhook import expr, symbol
from mathhook.polynomial.groebner import (
expression_to_sparse_polynomial,
sparse_polynomial_to_expression
)
x = symbol('x')
y = symbol('y')
vars = [x, y]
# Expression to sparse
e = expr('x^2 + y')
sparse = expression_to_sparse_polynomial(e, vars)
# Sparse back to expression
back = sparse_polynomial_to_expression(sparse, vars)
JavaScript
const { expr, symbol } = require('mathhook');
const {
expressionToSparsePolynomial,
sparsePolynomialToExpression
} = require('mathhook/polynomial/groebner');
const x = symbol('x');
const y = symbol('y');
const vars = [x, y];
// Expression to sparse
const e = expr('x^2 + y');
const sparse = expressionToSparsePolynomial(e, vars);
// Sparse back to expression
const back = sparsePolynomialToExpression(sparse, vars);
Performance
Time Complexity: Doubly exponential worst case, practical for small systems
API Reference
- Rust:
mathhook_core::polynomial::groebner - Python:
mathhook.polynomial.groebner - JavaScript:
mathhook.polynomial.groebner