Groebner Bases
Groebner bases are fundamental tools in computational algebraic geometry for working with polynomial ideals, enabling ideal membership testing, polynomial system solving, variable elimination, and geometric theorem proving.
Mathematical Definition
Groebner Basis Definition: A set is a Groebner basis for ideal with respect to monomial order if:
where denotes the leading term and denotes the ideal generated.
S-Polynomial: The S-polynomial of and is:
Buchberger's Criterion: is a Groebner basis if and only if for all pairs :
(i.e., reduces to 0 modulo )
Monomial Orders: - Lex: first non-zero entry of is positive - Grlex: Total degree first, then lex - Grevlex: Total degree first, then reverse lex from right
Code Examples
Basic Groebner Basis Computation
Compute Groebner basis for a polynomial ideal
use mathhook_core::core::polynomial::groebner::{GroebnerBasis, MonomialOrder};
use mathhook_core::{expr, symbol};
let x = symbol!(x);
let y = symbol!(y);
// Define polynomials: f1 = x - y, f2 = y^2 - 1
let f1 = expr!(x - y);
let f2 = expr!((y ^ 2) - 1);
// Create Groebner basis
let mut gb = GroebnerBasis::new(
vec![f1, f2],
vec![x.clone(), y.clone()],
MonomialOrder::Lex
);
// Compute the basis
gb.compute();
println!("Basis has {} polynomials", gb.basis.len());
Sparse Polynomial Representation
Work with sparse polynomials for efficiency
use mathhook_core::core::polynomial::groebner::{Monomial, expression_to_sparse_polynomial};
use mathhook_core::{expr, symbol};
// Create a monomial x^2 * y (exponents [2, 1])
let mono = Monomial::new(vec![2, 1]);
assert_eq!(mono.degree(), 3);
// Convert expression to sparse polynomial
let x = symbol!(x);
let y = symbol!(y);
let poly = expr!((x ^ 2) + y);
let vars = vec![x, y];
let sparse = expression_to_sparse_polynomial(&poly, &vars);
Polynomial Reduction
Reduce polynomial by a set of polynomials (division algorithm)
use mathhook_core::core::polynomial::groebner::{
poly_reduce,
poly_reduce_completely
};
// Single-step reduction
let reduced = poly_reduce(&poly, &basis, &order);
// Complete reduction (until no further reduction possible)
let fully_reduced = poly_reduce_completely(&poly, &basis, &order);
Bidirectional Expression Conversion
Convert between Expression and sparse polynomial representation
use mathhook_core::core::polynomial::groebner::{
expression_to_sparse_polynomial,
sparse_polynomial_to_expression
};
use mathhook_core::{expr, symbol};
let x = symbol!(x);
let y = symbol!(y);
let vars = vec![x.clone(), y.clone()];
// Expression to sparse
let expr = expr!((x ^ 2) + y);
let sparse = expression_to_sparse_polynomial(&expr, &vars).unwrap();
// Sparse back to expression
let back = sparse_polynomial_to_expression(&sparse, &vars);